Organic & Perovskite Photovoltaics & Photodetectors

Our current research interests involve using organic semiconductors and Pb-free metal halide perovskite materials and green solvents to fabricate photodetecting devices with both sandwich (vertical) and coplanar device structures. Our device fabrication is compatible with flexible substrates and we now focus on integrating these devices with energy storage or energy harvesting devices for systems that can be used in the Internet of Things.

We focus on fundamental studies of photophysics at different interfaces (metal/organic/organic/organic, organic/inorganic).

In the past, we have done a lot of work on the interface engineering of organic photovoltaics, mainly using sub-stoichiometric or hydrogenated metal oxide layers at the metal/orgnic interfaces.

Relevant Publications:

1)      Multiple Narrowband Bidirectional Self-Powered Organic Photodetector with Fast Response. Xia, Y. & Georgiadou, D. G. Laser & Photonics Reviews n/a, 2401032, doi: https://doi.org/10.1002/lpor.202401032 (2024).

2)      Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Panidi, J., Georgiadou, D. G., Schoetz, T. & Prodromakis, T. Advanced Functional Materials, 2200694, doi: https://doi.org/10.1002/adfm.202200694 (2022).

3)      Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors. Antoniou, G., Yuan, P., Koutsokeras, L., Athanasopoulos, S., Fazzi, D., Panidi, J., Georgiadou, D. G., Prodromakis, T. & Keivanidis, P. E. Journal of Materials Chemistry C 10, 7575-7585, doi:  https://doi.org/10.1039/D2TC00662F (2022).

4)      Electron Transporting Perylene Diimide-Based Random Terpolymers with Variable Co-Monomer Feed Ratio: A Route to All-Polymer-Based Photodiodes. Aivali, S., Yuan, P., Panidi, J., Georgiadou, D. G., Prodromakis, T., Kallitsis, J. K., Keivanidis, P. E. & Andreopoulou, A. K. Macromolecules 55, 672-683, doi:  https://doi.org/10.1021/acs.macromol.1c02159 (2022).

5)      Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Mohd Yusoff, A. R. b., Vasilopoulou, M., Georgiadou, D. G., Palilis, L. C., Abate, A. & Nazeeruddin, M. K. Energy & Environmental Science 14, 2906-2953, doi:  https://doi.org/10.1039/D1EE00062D (2021).

6)      Emissive Charge-Transfer States at Hybrid Inorganic/Organic Heterojunctions Enable Low Non-Radiative Recombination and High-Performance Photodetectors. Eisner, F., Foot, G., Yan, J., Azzouzi, M., Georgiadou, D. G., Sit, W. Y., Firdaus, Y., Zhang, G., Lin, Y.-H., Yip, H.-L., Anthopoulos, T. D. & Nelson, J. Advanced Materials n/a, 2104654, doi: https://doi.org/10.1002/adma.202104654 (2021).

7)      High Responsivity and Response Speed Single-Layer Mixed-Cation Lead Mixed-Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large-Area Rigid and Flexible Substrates. Georgiadou, D. G., Lin, Y.-H., Lim, J., Ratnasingham, S., McLachlan, M. A., Snaith, H. J. & Anthopoulos, T. D. Advanced Functional Materials 0, 1901371, doi:  https://doi.org/10.1002/adfm.201901371 (2019).

8)      Plasma induced degradation and surface electronic structure modification of Poly(3-hexylthiophene) films. Tountas, M., Georgiadou, D. G., Zeniou, A., Seintis, K., Soultati, A., Polydorou, E., Gardelis, S., Douvas, A. M., Speliotis, T., Tsikritzis, D., Kennou, S., Fakis, M., Gogolides, E., Tsoukalas, D., Argitis, P. & Vasilopoulou, M. Polymer Degradation and Stability 149, 162-172, doi: https://doi.org/10.1016/j.polymdegradstab.2017.12.010 (2018).

9)      Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography. Wyatt-Moon, G., Georgiadou, D. G., Semple, J. & Anthopoulos, T. D. ACS Applied Materials & Interfaces 9, 41965-41972, doi:  https://doi.org/10.1021/acsami.7b12942 (2017).

10)  Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics (vol 2, pg 1738, 2014). Vasilopoulou, M., Soultati, A., Georgiadou, D. G., Stergiopoulos, T., Palilis, L. C., Kennou, S., Stathopoulos, N. A., Davazoglou, D. & Argitis, P. Journal of Materials Chemistry A 4, 17875-17875, doi:  https://doi.org/10.1039/c6ta90225a (2016).

11)  Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. Vasilopoulou, M., Soultati, A., Georgiadou, D. G., Stergiopoulos, T., Palilis, L. C., Kennou, S., Stathopoulos, N. A., Davazoglou, D. & Argitis, P. Journal of Materials Chemistry A 2, 1738-1749, doi:  https://doi.org/10.1039/c3ta13975a (2014).

12)  Vasilopoulou, M., Georgiadou, D. G., Soultati, A., Papadimitropoulos, G., Argitis, P., Alexandropoulos, D., Vainos, N., Politi, C., Kamalakis, T. & Davazoglou, D. in 2014 16th International Conference on Transparent Optical Networks  International Conference on Transparent Optical Networks-ICTON (eds M. Jaworski & M. Marciniak)  (2014).

13)  Atomic-Layer-Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO2 in High-Efficiency Organic Photovoltaics. Vasilopoulou, M., Georgiadou, D. G., Soultati, A., Boukos, N., Gardelis, S., Palilis, L. C., Fakis, M., Skoulatakis, G., Kennou, S., Botzakaki, M., Georga, S., Krontiras, C. A., Auras, F., Fattakhova-Rohlfing, D., Bein, T., Papadopoulos, T. A., Davazoglou, D. & Argitis, P. Advanced Energy Materials 4, doi:  https://doi.org/10.1002/aenm.201400214 (2014).

14)  Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Vasilopoulou, M., Georgiadou, D. G., Douvas, A. M., Soultati, A., Constantoudis, V., Davazoglou, D., Gardelis, S., Palilis, L. C., Fakis, M., Kennou, S., Lazarides, T., Coutsolelos, A. G. & Argitis, P. Journal of Materials Chemistry A 2, 182-192, doi:  https://doi.org/10.1039/c3ta13107f (2014).

15)  Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures. Vasilopoulou, M., Douvas, A. M., Georgiadou, D. G., Constantoudis, V., Davazoglou, D., Kennou, S., Palilis, L. C., Daphnomili, D., Coutsolelos, A. G. & Argitis, P. Nano Research 7, 679-693, doi:  https://doi.org/10.1007/s12274-014-0428-9 (2014).

16)  The role of metal/metal oxide/organic anode interfaces in efficiency and stability of bulk heterojunction organic photodetectors. Soultati, A., Georgiadou, D. G., Douvas, A., Argitis, P., Alexandropoulos, D., Vainos, N. A., Stathopoulos, N. A., Papadimitropoulos, G., Davazoglou, D. & Vasilopoulou, M. Microelectronic Engineering 117, 13-17, doi:  https://doi.org/10.1016/j.mee.2013.12.008 (2014).

17)  Solution-Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics. Soultati, A., Douvas, A. M., Georgiadou, D. G., Palilis, L. C., Bein, T., Feckl, J. M., Gardelis, S., Fakis, M., Kennou, S., Falaras, P., Stergiopoulos, T., Stathopoulos, N. A., Davazoglou, D., Argitis, P. & Vasilopoulou, M. Advanced Energy Materials 4, doi:  https://doi.org/10.1002/aenm.201300896 (2014).

18)  Solution-processed nanostructured zinc oxide cathode interfacial layers for efficient inverted organic photovoltaics. Polydorou, E., Makarona, E., Soultati, A., Georgiadou, D. G., Kyrasta, T., Speliotis, T., Tsamis, C., Papanikolaou, N., Argitis, P., Kostis, I., Kokkosis, A., Davazoglou, D. & Vasilopoulou, M. Microelectronic Engineering 119, 100-104, doi:  https://doi.org/10.1016/j.mee.2014.03.006 (2014).

19)  Sol-gel synthesized, low-temperature processed, reduced molybdenum peroxides for organic optoelectronics applications. Douvas, A. M., Vasilopoulou, M., Georgiadou, D. G., Soultati, A., Davazoglou, D., Vourdas, N., Giannakopoulos, K. P., Kontos, A. G., Kennou, S. & Argitis, P. Journal of Materials Chemistry C 2, 6290-6300, doi:  https://doi.org/10.1039/c4tc00301b (2014).

20)  Vapor-deposited hydrogenated and oxygen-deficient molybdenum oxide thin films for application in organic optoelectronics. Vasilopoulou, M., Kostis, I., Douvas, A. M., Georgiadou, D. G., Soultati, A., Papadimitropoulos, G., Stathopoulos, N. A., Savaidis, S. S., Argitis, P. & Davazoglou, D. Surface & Coatings Technology 230, 202-207, doi:  https://doi.org/10.1016/j.surfcoat.2013.05.033 (2013).

21)  Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells. Palilis, L. C., Vasilopoulou, M., Douvas, A. M., Georgiadou, D. G., Kennou, S., Stathopoulos, N. A., Constantoudis, V. & Argitis, P. Solar Energy Materials and Solar Cells 114, 205-213, doi:  https://doi.org/10.1016/j.solmat.2013.02.034 (2013).

22)  The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics. Vasilopoulou, M., Douvas, A. M., Georgiadou, D. G., Palilis, L. C., Kennou, S., Sygellou, L., Soultati, A., Kostis, I., Papadimitropoulos, G., Davazoglou, D. & Argitis, P. Journal of the American Chemical Society 134, 16178-16187, doi:  https://doi.org/10.1021/ja3026906 (2012).

23)  Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices. Vasilopoulou, M., Palilis, L. C., Georgiadou, D. G., Argitis, P., Kennou, S., Kostis, I., Papadimitropoulos, G., Stathopoulos, N. A., Iliadis, A. A., Konofaos, N., Davazoglou, D. & Sygellou, L. Thin Solid Films 519, 5748-5753, doi:  https://doi.org/10.1016/j.tsf.2010.12.207 (2011).

24)  Nanostructured metal oxides as cathode interfacial layers for hybridpolymer electronic devices. Vasilopoulou, M., Palilis, C. L., Georgiadou, D. G., Argitis, P., Kostis, I., Papadimitropoulos, G., Stathopoulos, A. N., Iliadis, A., Konofaos, N. & Davazoglou, D. Advances in Science and Technology 75, 74-78, doi:  https://doi.org/10.4028/www.scientific.net/AST.75.74 (2010).

Photo by Unknown Author is licensed under CC BY-NC-ND

Previous
Previous

Neuromorphic computing

Next
Next

Organic Light-Emitting Devices